MATH 401-Section 0201 APPLICATIONS OF LINEAR ALGEBRA

CHAPTER 1 - Part A. LINEAR ALGEBRAIC SYSTEMS

FALL - 2014

Solution of Linear Systems

Investment Portfolio

You have a portfolio totaling $\$ 200.000$ and want to invest in municipal bonds, blue-chip stocks, and speculative stocks. The municipal bonds pay 6\% annually. Over a 5-years period you expect blue-chip stocks to return 10\% annually and speculative stocks to return 15% annually. You want a combined annual return of 8%, and you also want to have only one-fourth of the portfolio invested in stocks. How much should be allocated to each type of investment?

Solution

Let M represent municipal bonds, B represent blue-chip stocks, and G represent speculative stocks.
$\left\{\begin{aligned} M+B+G & =200.000 \text { Eq 1: total investment is } 200.000 \\ 0.06 M+0.10 B+0.15 G & =16.000 \quad \text { Eq 2: combined annual return } 8 \% \text { of } 200.000 \\ B+G & =50.000 \quad \text { Eq 3: } \frac{1}{4} \text { of investment is allocated to stocks }\end{aligned}\right.$

- 3 equations and 3 unknowns

Solution of Linear Systems

Definition: System of Linear Equations.

A "system" of equations is a set or collection of equations that you deal with all together at once. The following is a lineal system of m equations and n unknowns:

$$
\left.\begin{array}{llllll}
E_{1}: & a_{11} x_{1}+ & a_{12} x_{2}+ & \cdots & +a_{1 n} x_{n}= & b_{1} \tag{S}\\
E_{2}: & a_{21} x_{1}+ & a_{22} x_{2}+ & \cdots & +a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
E_{m}: & a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & \cdots & +a_{m n} x_{n}= & b_{m}
\end{array}\right\}
$$

where, for $i \in\{1, \cdots, m\}$ and $j \in\{1, \cdots, n\}$, the constants $a_{i j}$ are the coefficients, b_{i} the constant terms and x_{1}, \cdots, x_{n} are the unknown of the system. First we consider that there are the same number of equations and unknowns ($m=n$).

Solution of Linear Systems

Gaussian Elimination

Gaussian Elimination is a simple, systematic algorithm to solve systems of linear equation.

Goal

The goal of this method is to weed out selective entries $a_{i j}$ (or coefficients) of the system by performing linear combination of equations.

Example

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}= & b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}= & b_{3}
\end{array} \left\lvert\, \Longleftrightarrow \begin{array}{rr}
\widetilde{a}_{11} x_{1}+\widetilde{a}_{12} x_{2}+\widetilde{a}_{13} x_{3}= & \widetilde{b}_{1} \\
\widetilde{a}_{22} x_{2}+\widetilde{a}_{23} x_{3}= & \widetilde{b}_{2} \\
\widetilde{a}_{33} x_{3}= & \widetilde{b}_{3} \\
\hline
\end{array}\right.
$$

Solution of Linear Systems

Gaussian Elimination

We use three operations to simplify the linear system (S):

1. Equation E_{i} can be multiplied by any nonzero constant λ with the resulting equation used in place of E_{i}. This operation is denoted $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$
2. Equation E_{j} can be multiplied by any nonzero constant λ and added to the equation E_{i} with the resulting equation used in place of E_{i}. This operation is denoted $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$
3. Equations E_{i} and E_{j} can be transposed in order. This operation is denoted $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$

By a sequence of these operations, a linear system can be transformed to a more easily solved linear system that has the same solution.

Solution of Linear Systems

Example
To illustrate, consider a system of three linear equations

$$
\begin{aligned}
& x+2 y+z=2 \\
& 2 x+6 y+z=7 \\
& x+y+4 z=3 \\
& \hline
\end{aligned}
$$

Solution

$$
\left.\begin{array}{ll}
x+2 y+z= & 2 \\
2 x+6 y+z= & 7 \\
x+y+4 z= & 3
\end{array} \right\rvert\, \sim \begin{aligned}
x+2 y+z= & 2 \\
2 y-z= & 3 \\
z= & 1
\end{aligned}
$$

We solved the triangular system by the method of Back Substitution:

$$
x=-3, \quad y=2, \quad z=1
$$

Matrices

Definición: Matrix

A matrix is a rectangular array of numbers. We use the notation

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

or $A=\left(a_{i j}\right)$ for a general matrix of size $m \times n$, where m denotes the number of rows in A and n denotes the number of columns.

Example

$$
\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
1.4 & -22 & 0.5
\end{array}\right), \quad\binom{1}{0}, \quad\left(\begin{array}{ll}
2.5 & 1 \\
2 & -8
\end{array}\right)
$$

Matrices

Definition

- The set of all $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$.
- Matrix Addition.

Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathbb{R}^{m \times n}$, then the sum $A+B$ is calculated entrywise:

$$
A+B=\left(c_{i j}\right) \quad \text { with } \quad c_{i j}=a_{i j}+b_{i j}, \forall i=1, \ldots, m, \forall j=1, \ldots, n .
$$

- Multiplication by Scalars

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R}$ the the scalar multiplication αA is given by multiplying every entry of A by c :

$$
\alpha A=\alpha\left(a_{i j}\right)=\left(\alpha a_{i j}\right)
$$

Matrices

Definition

- Matrix Product

Let $A=\left(a_{i j}\right) \in \mathbb{R}^{m \times n}, B=\left(b_{i j}\right) \in \mathbb{R}^{n \times p}$. The matrix product $C=A \cdot B$ belongs to $\mathbb{R}^{m \times p}$, con

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Even if both products are defined, they need not be equal, i.e., generally one has $A B \neq B A$.

Example

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{ll}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

Matrices

Example

- Matrix-Matrix product

$$
\text { If } A=\left(\begin{array}{lll}
2 & 1 & 5 \\
3 & 0 & 4
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rrr}
-1 & 7 & 8 \\
4 & 6 & 0 \\
5 & 7 & 3
\end{array}\right)
$$

Then, only $A B$ is possible and we obtain:

$$
A B=\left(\begin{array}{lll}
27 & 55 & 31 \\
17 & 49 & 36
\end{array}\right)
$$

Matrices

Definition

- The null matrix is a $m \times n$ matrix consisting of all zero entries. We denote this matrix by θ.
- We denote the identity matrix of order n as I_{n} or simply by I if the size can be trivially determined by the context. I_{n} is a square matrix with ones on the main diagonal and zeros elsewhere, moreover

$$
A \cdot I=I \cdot A=A, \quad \forall A \in \mathbb{R}^{n \times n} .
$$

Example

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Matrices

Definition: Matrix Inverse.
An $n \times n$ square matrix $A \in \mathbb{R}^{n \times n}$ is called invertible (also nonsingular or nondegenerate) if there exits $B \in \mathbb{R}^{n \times n}$ such that $A \cdot B=I$ and $B \cdot A=I$,

- Matrix B is called inverse of A, denoted by A^{-1}.
- If A is invertible, then the inverse A^{-1} is uniquely determined.
- If A and B are invertibles, then $A B$ is invertible and

$$
(A \cdot B)^{-1}=B^{-1} \cdot A^{-1} .
$$

Solution of Linear Systems

Back to the system

$$
\begin{array}{ll}
x+2 y+z= & 2 \\
2 x+6 y+z= & 7 \\
x+y+4 z= & 3 \\
\hline
\end{array}
$$

We can write the above system as $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
7 \\
3
\end{array}\right)
$$

Solution of Linear Systems

Remark

System (S) can be written as follow:

$$
\underbrace{\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)}_{A=\text { coefficients matrix }} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)}_{X=\text { unknowns }}=\underbrace{\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)}_{B=\text { independent terms }}
$$

and we obtain the matrix form:

$$
A X=B .
$$

- If $b_{1}=b_{2}=\cdots=b_{m}=0$, the above matrix equation is called homogeneous, and non-homogeneous or inhomogeneous otherwise.

Solution of Linear Systems

Gaussian Elimination. Regular Case

We begin by replacing the system (S) by its matrix constituents $A X=B$. For the purpose of performing the same elementary row operations in A and B we introduce the Augmented matrix.

Definition

Given the system $A X=B$, the augmented matrix is given by $M=(A \mid B) \in \mathbb{R}^{m \times(n+1)}$

$$
M=(A \mid B)=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots . & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots . & a_{2 n} & b_{2} \\
\vdots & \vdots & \ldots . & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots . & a_{m n} & b_{m}
\end{array}\right)
$$

Solution of Linear Systems

Example

$$
x+2 y+z=2
$$

- System of linear equation: $2 x+6 y+z=7$

$$
x+y+4 z=3
$$

- Matrix form $A \mathbf{x}=\mathbf{b}$ with

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
7 \\
3
\end{array}\right)
$$

- Augmented matrix $M=(A \mid \mathbf{x})=\left(\begin{array}{lll|l}1 & 2 & 1 & 2 \\ 2 & 6 & 1 & 7 \\ 1 & 1 & 4 & 3\end{array}\right)$

Solution of Linear Systems

Example (Cont.)

By applying elementary row operations in M we obtain:

$$
M=\left(\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
2 & 6 & 1 & 7 \\
1 & 1 & 4 & 3
\end{array}\right) \quad \sim \quad N=(U \mid \mathbf{c})=\left(\begin{array}{lll|l}
1 & 2 & 1 & 2 \\
0 & 2 & -1 & 3 \\
0 & 0 & \frac{5}{2} & \frac{5}{2}
\end{array}\right)
$$

Then (1) is equivalent to $U \mathbf{x}=\mathbf{c}$, where the coefficient matrix U is upper triangular, namely, $u_{i j}=0$ whenever $i>j$.

Definition

A square matrix A will be called regular if the algorithm successfully reduces it to upper triangular U with all non-zero pivots on the diagonal.

Solution of Linear Systems

Elementary Matrices

A key observation is that elementary row operations can be realized by matrix multiplication.

Example.

$$
\begin{aligned}
A= & \left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right) \\
& \underbrace{\left(R_{2}-2 R_{1}\right) \rightarrow R_{2}}_{E}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -1 \\
1 & 1 & 4
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -1 \\
1 & 1 & 4
\end{array}\right)
\end{aligned}
$$

Solution of Linear Systems

Example.

$$
\begin{aligned}
A= & \left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right) \xrightarrow{\substack{\left(R_{2}-2 R_{1}\right) \rightarrow R_{2} \\
\left(R_{3}-R_{1}\right) \rightarrow R_{3}}}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -1 \\
0 & -1 & 3
\end{array}\right) \xrightarrow{\left(R_{3}+\frac{1}{2} R_{2}\right) \rightarrow R_{3}}\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -1 \\
0 & 0 & \frac{5}{2}
\end{array}\right) \\
& \text { If we set } E_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

we obtain that when

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 6 & 1 \\
1 & 1 & 4
\end{array}\right), \quad \text { then } \quad E_{3} E_{2} E_{1} A=U=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 2 & -1 \\
0 & 0 & \frac{5}{2}
\end{array}\right) .
$$

Solution of Linear Systems

Inverse elementary matrix.

To undo the operation of adding c times row j to row i, we must perform the inverse row operation that subtract c times row j from row i.

Example.

Solution of Linear Systems

Inverse elementary matrix.

To undo the operation of adding c times row j to row i, we must perform the inverse row operation that subtract c times row j from row i.

Example.

The matrices L_{1}, L_{2} and L_{3} defined by

$$
L_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad L_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right), \quad L_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{1}{2} & 1
\end{array}\right)
$$

are the inverses of E_{1}, E_{2} and E_{3}, respectively, namely

$$
L_{1} E_{1}=L_{2} E_{2}=L_{3} E_{3}=I .
$$

Solution of Linear Systems

Example

Moreover

$$
L=L_{1} L_{2} L_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & -\frac{1}{2} & 1
\end{array}\right) .
$$

Here L is a lower triangular matrix with all the entries on the diagonal are equal to 1 (unit lower triangular matrix).

Lemma.

If L and \widehat{L} are lower triangular matrices of the same size, so is their product $L \widehat{L}$. Similarly, if U and \widehat{U} are upper triangular matrices of the same size, so is their product $U \hat{U}$.

Solution of Linear Systems

The $L U$ Factorization

From the above example we notice that

$$
\begin{aligned}
L U & =\left(L_{1} L_{2} L_{3}\right)\left(E_{3} E_{2} E_{1} A\right)=L_{1} L_{2}\left(L_{3} E_{3}\right) E_{2} E_{1} A=L_{1} L_{2} I E_{2} E_{1} A \\
& =L_{1}\left(L_{2} E_{2}\right) E_{1} A=L_{1} I E_{1} A=\left(L_{1} E_{1}\right) A=I A=A .
\end{aligned}
$$

Conclusions

- $A=L U$
$\left.\begin{array}{ll}L: & \text { unit lower triangular } \\ U: & \text { upper triangular }\end{array}\right\} L U$ Decomposition (of factorization) of A.
- This procedure is dimension-independent, namely it works for matrices $A \in \mathbb{R}^{n \times n}$ for as long as A has $n-1$ nonvanishing pivots.

Solution of Linear Systems

The $L U$ Factorization

2. If $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$, then

$$
A x=b \Longleftrightarrow L(U x)=b \Longleftrightarrow\left\{\begin{array}{l}
L y=b \\
U x=y
\end{array}\right.
$$

Therefore, to solve the system $\boldsymbol{A x}=\boldsymbol{b}$ is equivalent to:

1. Solve $L y=b$ and, then,
2. Solve $U \boldsymbol{x}=\boldsymbol{y}$.

Both are triangular systems, lower and upper, respectively.

Solution of Linear Systems

Solving triangular systems

- Given

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
l_{n 1} & l_{n 2} & \cdots & l_{n n}
\end{array}\right) \quad \text { and } \quad \boldsymbol{U}=\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & \cdots & u_{2 n} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & u_{n n}
\end{array}\right)
$$

L is lower triangular and U is upper triangular.

- Triangular system solving is easy because the unknowns can be resolved without any further manipulation of the matrix of coefficients.

Solution of Linear Systems

Example

Consider the following 3-by-3 lower triangular case:

$$
\boldsymbol{L}=\left(\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{32}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

The unknowns can be determined as follows:

$$
\begin{aligned}
x_{1} & =b_{1} / l_{11} \\
x_{2} & =\left(b_{2}-l_{21} x_{1}\right) / l_{22} \\
x_{3} & =\left(b_{3}-l_{31} x_{1}-l_{32} x_{2}\right) / l_{33}
\end{aligned}
$$

This is the 3-by-3 version of an algorithm known as forward substitution.
Notice that the process requires l_{11}, l_{22}, l_{33} to be nonzero.

Solution of Linear Systems

Forward Substitution

- Consider the system $L \boldsymbol{x}=\boldsymbol{b}$ with lower triangular matrix \boldsymbol{L}. We proceed by simple forward substitution of variables:

$$
\left\{\begin{array}{lll}
l_{11} x_{1} & =b_{1} \Rightarrow x_{1}=b_{1} / l_{11} \\
l_{21} x_{1}+l_{22} x_{2} & =b_{2} \Rightarrow x_{2}=\left(b_{2}-l_{21} x_{1}\right) / l_{22} \\
\vdots & \vdots & \\
l_{n 1} x_{1}+\cdots+l_{n n} x_{n} & =b_{n} \Rightarrow x_{n}=\left(b_{n}-l_{n 1} x_{1}-\cdots-l_{n n-1} x_{n-1}\right) / l_{n n}
\end{array}\right.
$$

- Algorithm:

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \qquad \begin{array}{r}
x_{i}=\frac{1}{l_{i i}}\left(b_{i}-\sum_{j=1}^{i-1} l_{i j} x_{j}\right)
\end{array}
\end{aligned}
$$

Solution of Linear Systems

Backward Substitution

On the other hand, consider the system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{b}$ with upper triangular con matrix \boldsymbol{U}. Then we obtain the following algorithm:

$$
\begin{aligned}
& \text { For } i=n, n-1, \ldots, 1 \\
& \quad x_{i}=\frac{1}{u_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right)
\end{aligned}
$$

