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APPLICATIONS OF LINEAR ALGEBRA

CHAPTER 1 - Part A.
LINEAR ALGEBRAIC SYSTEMS

FALL - 2014



‘Solution of Linear Systemsl
| Investment Portfolio I

You have a portfolio totaling $200.000 and want to invest in municipal bonds
blue-chip stocks , and speculative stocks . The municipal bonds pay 6%
annually. Over a 5-years period you expect blue-chip stocks to return 10%
annually and speculative stocks to return 15% annually. You want a combined
annual return of 8%, and you also want to have only one-fourth of the portfolio
invested in stocks. How much should be allocated to each type of investment?

| Solution I

Let M represent municipal bonds, B represent blue-chip stocks, and G
represent speculative stocks.

( M + B + G =200.000 Eq 1: total investment is 200.000
0.06 M + 0.10B + 0.15G =16.000 Eq 2: combined annual return 8% of 200.000

B + G =50.000 Eq 3:% of investment is allocated to stocks

L\

\

e 3 equations and 3 unknowns



‘Solution of Linear Systemsl
‘ Definition: System of Linear Equations. I

A "system" of equations is a set or collection of equations that you deal
with all together at once. The following is a lineal system of m
equations and n unknowns :

)
Ey: anzi+  apxet+ o0 Faiprn = by
Ey:  asizi+  azexet+ -0 AaopTn = b
0 (S)
Em: Am1T1+ aAm2T2+ -+  +AmpTp = bm )
where, fori € {1,--- ;m} and j € {1,--- ,n}, the constants a;; are the
coefficients , b; the constant terms and x4, -- - , z,, are the unknown of

the system . First we consider that there are the same number of
equations and unknowns (m = n).



‘Solution of Linear Systemsl
| Gaussian Elimination I

Gaussian Elimination is a simple, systematic algorithm to solve systems
of linear equation.

Goal I

The goal of this method is to weed out selective entries a;; (or
coefficients) of the system by performing linear combination of equations.

‘ Example I

a11x1 + a12T2 + a13x3 = by a11x1 + a12T2 + a13x3 = by
211 + A22T2 + a23x3 = by | a29%2 + a23T3 = bo
3171 + a32x2 + aszzxr3 = b3 a33xr3 = b3

(T'riangular form)



‘Solution of Linear Systemsl
| Gaussian Elimination I

We use three operations to simplify the linear system (5):

1. Equation E; can be with the
resulting equation used in place of E;. This operation is denoted
(AE;) — (E)

2. Equation £, can be
with the resulting equation used in place of E;.
This operation is denoted (E; + A\E,;) — (E;)
3. Equations E; and E; can be In order. This operation is
denoted (E;) + (E;)

By a sequence of these operations, a linear system can be
to a more easily solved linear system that has



‘Solution of Linear Systemsm

‘ Example I To illustrate, consider a system of three linear equations

rTH+2y+z= 2
20 +6y+ 2= 7
r+y+4z= 3

| Solution I

r+2y+z2= 2 r+2y+z= 2
20 +6y+2= 7 ~ 2y —z= 3
r+y+4z= 3 z= 1

We solved the triangular system by the method of Back Substitution:

r=-3, y=2 z=1



\ Matrices I
| Definicidn: Matrix I

A matrix is a rectangular array of numbers. We use the notation

( aii a9 A1in \
a1 a9 aon
A= :
\ aAm1 aAm2 Amn, )

or A = (a;;) for a general matrix of size m x n, where m denotes the
number of rows in A and n denotes the number of columns.

‘ Example I

1 20 1
; (1.4 —22 ().5), ;



\ Matrices I
| Definition I

® The set of all m x n matrices is denoted by R™*™,

» Matrix Addition .

Let A = (a;;), B = (b;;) € R™*", then the sum A + B is calculated
entrywise:

A—I— B = (Cij) with Cij = Qg4 + bw,\V/Z — 1, ...,m,‘v’j — 1, NIZ

® Multiplication by Scalars
Let A = (a;;) € R™*™ and « € R the the scalar multiplication oA is
given by multiplying every entry of A by c:

aA = ala;;) = (aa;j).



\ Matrices I
| Definition I

® Matrix Product
Let A = (a;;) € R™*", B = (b;;) € R"*P. The matrix product
C = A - B belongs to R™*P, con

n
Cij = E kb
k=1

Even if both products are defined, they need not be equal, i.e., generally
one has AB # BA.

‘ Example I




\ Matrices I
‘ Example I

®» Matrix-Matrix product

2 1 5 B
If A = and B =
3 0 4

Then, only AB Is possible and we obtain:

27 55 31
AB =
17 49 36

Ul
o BN

Lw O 0o

|
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\ Matrices I
| Definition I

® The null matrix is a m x n matrix consisting of all zero entries. We
denote this matrix by 6.

® \We denote the identity matrix of order n as I,, or simply by I if the
size can be trivially determined by the context. I,, Is a square matrix
with ones on the main diagonal and zeros elsewhere, moreover

AT=T-A=A VAcRY™"

‘ Example I

oS = O
= O O
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\ Matrices I
Definition: Matrix Inverse. I

An n x n square matrix A € R"*" is called invertible (also nonsingular or
nondegenerate) if there exits B € R™"*" such that A- B = I and
B-A=1,

® Matrix B is called inverse of A, denoted by A~1.
® |If Aisinvertible, then the inverse A~! is uniquely determined.

® |[f A and B are invertibles, then AB is invertible and

(A-B)y"'=B"1t. A1

12



‘Solution of Linear Systemsm
‘ Back to the system I

rTH+2y+z= 2
20 +6y+ 2= 7
r+y+4z= 3

We can write the above system as Ax = b with

N
I
— N
_ Oy DN
A~ = =
o
I
N
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‘Solution of Linear Systemsl
Remark I

System (S) can be written as follow:

( a1 a2 ... G1p \ (551 \ ( by \
b

a1 as92 aAon X2

2

\ A & 7 A\ .
Ve Ve

7

e ) ) L

A=coeflicients matrix X =unknowns B=independent terms

and we obtain the matrix form:
AX = B.

® Ifby=0,=---=0b, =0, the above matrix equation is called
homogeneous , and non-homogeneous or inhomogeneous
otherwise.



‘Solution of Linear Systemsl
‘ Gaussian Elimination. Regular Case I

We begin by replacing the system (.5) by its matrix constituents AX = B.
For the purpose of performing the same elementary row operations in A
and B we introduce the Augmented matrix.

| Definition I

Given the system AX = B, the augmented matrix is given by
M = (A|B) ¢ Rm*(n+1)

{ aii a2 eeee Q1n bl \

asq aso Aon bg
M = (A[B) =

Kaml aAm2 .... Amn bm)



‘Solution of Linear Systemsl
‘ Example I

rT+2y+z2= 2
® System of linear equation: 2z +6y+2= 7
r+y+4z= 3
® Matrix form Ax = b with
1 2 1 x
A=12 6 1 x=1 vy
1 1 4 z
1 2 1
® Augmentedmatrix M = (Alx)=| 2 6 1
1 1 4
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‘Solution of Linear Systemsl
‘ Example (Cont.) I

By applying elementary row operations in M we obtain:

1 2 1]2 1 2 1 |2
M=1|2 6 1|7 ~ N=Ul)=]0 2 -1]|3
1 1 43 00 2 |3

Then (1) is equivalent to Ux = c, where the coefficient matrix U is upper
triangular, namely, u;; = 0 whenever i > j.

| Definition I

A square matrix A will be called regular if the algorithm successfully

reduces it to upper triangular U with all non-zero pivots on the diagonal.

17



‘Solution of Linear Systemsl
‘ Elementary Matrices I

A key observation is that elementary row operations can be realized by
matrix multiplication.

‘ Example. I

1 2 1 1 2 1

A=|2 ¢ 1| EYE 1 o
1 1 4 1 1 4
10 0\ /1 2 1 1 2 1
21026 1|=]0 2 -1
0 0 1/ \1 1 4 1 1 4

o <
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‘Solution of Linear Systemsl
‘ Example. I

1 2 1\ (R;—2Ry)—R, [1 2 1 1
A _ 2 6 1 (R3—R1 —Rs3 2 B (R3+%E>)_>R3
1 1 4 0o -1 3 0
1 0 O 1 0 0
fwesetE1=|-2 1 0|, E2=10 1 0|, E3=
0 0 1 -1 0 1
we obtain that when
1 2 1
0 2 -1

S
|
— N
—_ O DN

1
11, then FE3FE,F1A=U =
4

0 O

Do| Ot

= = -
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‘Solution of Linear Systemsl
‘ Inverse elementary matrix. I

To undo the operation of adding c times row 5 to row i, we must perform
the inverse row operation that subtract ¢ times row j from row s.

‘ Example. I

1 0 0 1 2 1 1 2 1
If -2 1 0 2 6 1]1=10 2 -1
0O 0 1 1 1 4 1 1 4
- ~ _
1 0 O 1 2 1 1 2 1
then 2 1 0 0 2 —-1|=12 6 1
0 0 1 1 1 4 1 1 4
N ~ _

20



‘Solution of Linear Systemsl
‘ Inverse elementary matrix. I

To undo the operation of adding c times row 5 to row i, we must perform
the inverse row operation that subtract ¢ times row j from row s.

‘ Example. I

The matrices L, L, and L3 defined by

1 0 0 1 0 0 1 0 0
Li=(2 1 0], Le=|0 1 0|, Ls=(0 1 0
0 0 1 1 0 1 0 —5 1

are the inverses of F;, Es and Es, respectively, namely

LBy = Lolby = Lalis = 1.
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‘Solution of Linear Systemsl
‘ Example I

Moreover
1 0 O
L=011LLs=12 1 0
1
I —5 1

Here L is a lower triangular matrix with all the entries on the diagonal are
equal to 1 (unit lower triangular matrix).

| Lemma. I

If L and L are lower triangular matrices of the same size, so is their

product LL. Similarly, if U and U are upper triangular matrices of the

same size, so Is their product Uy,

22



‘Solution of Linear Systemsl
The LU Factorizationl

From the above example we notice that

LU =(LiLoL3)(E3EsE1A) = L1 Lo(L3Es)EsEr A = L1 Lyl EsEr A
—=L1(LoEo2)E1A = LiIF1A = (L1E))A=IA= A.

]

Conclusions

® A=LU

L : unit lower triangular

LU Decomposition (of factorization) of A.
U : upper triangular

® This procedure is dimension-independent, namely it works for

matrices A € R™*" for as long as A has n — 1 nonvanishing pivots.
23



‘Solution of Linear Systemsl
The LU Factorizationl

® |fA=LU,then

Ly =0,
Ar =b <— L({Ux) =b <—

Therefore, to solve the system Ax = b is equivalent to:

1. Solve Ly = b and, then,
2. Solve Ux = y.

Both are triangular systems, lower and upper, respectively.

Ux =y.

24



‘Solution of Linear Systemsl
‘ Solving triangular systems I

® Given

{lll 0 T 0 \ (Ull Uiz - uln\
- l21 l22 L and [ — 0 U292 .o Uon
S

L is lower triangular and U is upper triangular.

® Triangular system solving is easy because the unknowns can be
resolved without any further manipulation of the matrix of
coefficients.



‘Solution of Linear Systemsl
‘ Example I

Consider the following 3-by-3 lower triangular case:

111 0 0 L1 bl
L= 11y Il 0 o2 | = | b2
I31 32 32/ \x3 b3

The unknowns can be determined as follows:

r1 = b1/111
re = (by —lo171)/l20
rs = (b3 —l3121 —l3222)/l33

This is the 3-by-3 version of an algorithm known as forward substitution.
Notice that the process requires /1, l22, [33 t0 be nonzero.

26



‘Solution of Linear Systemsl
| Forward Substitution I

® Consider the system Lax = b with lower triangular matrix L. We
proceed by simple forward substitution of variables:

/

l1121 = b = z1=0b/l
o121 + lo2x9 = by = x9=(bs —lo121) /2o
\ lnlwl R lnnxn — bn = Ty = (bn — lnlxl — lnn—lajn—l) /lnn
For:=1,...,n
® Algorithm: i1

27



‘Solution of Linear Systemsl
| Backward Substitution I

On the other hand, consider the system Ux = b with upper triangular
con matrix U. Then we obtain the following algorithm:

Fori=n,n—1,...,1

1 n
L; — — (bz — Z uijacj)
Uiq

j=i+1
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